761 research outputs found

    OL-018 Efficacy of interferon for chronic hepatitis B patients with normal or paranormal ALT

    Get PDF

    Longitudinal broadening of near side jets due to parton cascade

    Full text link
    Longitudinal broadening along Δη\Delta\eta direction on near side in two-dimensional (Δϕ×Δη\Delta\phi \times \Delta\eta) di-hadron correlation distribution has been studied for central Au+Au collisions at sNN\sqrt{s_{NN}} = 200 GeV, within a dynamical multi-phase transport model. It was found that the longitudinal broadening is generated by a longitudinal flow induced by strong parton cascade in central Au+Au collisions, in comparison with p+p collisions at sNN\sqrt{s_{NN}} = 200 GeV. The longitudinal broadening may shed light on the information about strongly interacting partonic matter at RHIC.Comment: 5 pages, 4 figures; accepted by Eur. Phys. J.

    Influence of casting temperature on the thermal stability of Cu- and Zr-based metallic glasses: theoretical analysis and experiments

    Get PDF
    Influence of casting temperature on the thermal stability of Cu- and Zr-based metallic glasses (MGs) was analyzed based on the monomer-cluster structural model using the Johnson-Mehl-Avrami (JMA) equation. The result indicates that increasing the casting temperature can enhance the thermal stability of MGs. It is suggested that it be attributed to the decrease in the amount of the local ordering clusters induced by the elevating casting temperature. The prediction is confirmed by continuous heating transformation diagrams constructed for the Cu- and Zr-amorphous samples obtained under different casting temperatures

    Phenolic Compound Profiles in Grape Skins of Cabernet Sauvignon, Merlot, Syrah and Marselan Cultivated in the Shacheng Area (China)

    Get PDF
    The phenolic compounds in the grape skins of Cabernet Sauvignon (CS), Merlot (ML), Syrah (SY) and Marselan (MS) from Shacheng, in China, were compared using HPLC-MS/MS. The results showed that the types and levels of phenolic compounds varied greatly with cultivars. Malvidin derivatives were the main anthocyanins. CS and ML showed a higher content of malvidin-3-O-(6-O-acetyl)-glucoside than malvidin-3-O-(trans-6-O- coumaryl)-glucoside, while SY and MS differed from CS and ML. ML had higher delphinidin and cyanidin derivatives, SY had higher peonidin derivatives, while malvidin and petunidin were higher in MS. The total content of flavonols, flavan-3-ols, phenolic acids and stilbenes in grape skins showed no difference among CS, ML and MS. Isorhamnetin-3-O-glucoside (CS, ML, MY), quercetin-3O-glucoside (SY), procyanidin trimer (SY, MS), procyanidin dimer (CS, ML), syringetin-3-O-glucoside, trans-cinnamic acid and resveratrol were the most abundant non-anthocyanin phenolic compounds. Cluster analysis showed that CS and ML, and SY and MS had similar phenolic profiles

    Partonic effects on the elliptic flow at relativistic heavy ion collisions

    Get PDF
    The elliptic flow in heavy ion collisions at RHIC is studied in a multiphase transport model. By converting the strings in the high energy density regions into partons, we find that the final elliptic flow is sensitive to the parton scattering cross section. To reproduce the large elliptic flow observed in Au+Au collisions at s=130A\sqrt s=130A GeV requires a parton scattering cross section of about 6 mb. We also study the dependence of the elliptic flow on the particle multiplicity, transverse momentum, and particle mass.Comment: 7 pages, 7 figures, revtex, text added to detail the procedure for conversions between hadrons and parton

    Recent results from parton cascade and microscopic transport

    Full text link
    Parton cascade is a microscopic transport approach for the study of the space-time evolution of the Quark-Gluon Plasma produced in relativistic heavy ion collisions and its experimental manifestations. In the following, parton cascade calculations on elliptic flow and thermalization will be discussed. Dynamical evolution is shown to be important for the production of elliptic flow including the scaling and the breaking of the scaling of elliptic flow. The degree of thermalization is estimated using both an elastic parton cascade and a radiative transport model. A longitudinal to transverse pressure ratio, PL/PT≈0.8P_L/P_T\approx 0.8, is shown to be expected in the central cell in central collisions. This provides information on viscous corrections to the ideal hydrodynamical approach.Comment: Presented at Hot Quarks 2008, Estes Park, Colorado, USA, 18-23 August 200

    Habitable Zones and UV Habitable Zones around Host Stars

    Full text link
    Ultraviolet radiation is a double-edged sword to life. If it is too strong, the terrestrial biological systems will be damaged. And if it is too weak, the synthesis of many biochemical compounds can not go along. We try to obtain the continuous ultraviolet habitable zones, and compare the ultraviolet habitable zones with the habitable zones of host stars. Using the boundary ultraviolet radiation of ultraviolet habitable zone, we calculate the ultraviolet habitable zones of host stars with masses from 0.08 to 4.00 \mo. For the host stars with effective temperatures lower than 4,600 K, the ultraviolet habitable zones are closer than the habitable zones. For the host stars with effective temperatures higher than 7,137 K, the ultraviolet habitable zones are farther than the habitable zones. For hot subdwarf as a host star, the distance of the ultraviolet habitable zone is about ten times more than that of the habitable zone, which is not suitable for life existence.Comment: 5 pages, 3 figure

    Droplet entrainment within the evaporator to the suitable volume-filling ratio of a vertical two-phase closed thermosyphon

    Get PDF
    The present study on vertical two-phase closed thermosyphon (TPCT) is aimed to determine the suitable volume-filling ratio, as a function of geometries, heat flux and vapor temperature, in order to avoid the potential local dryout in the evaporator section and hence to maximize the performance. In the study, the droplet entrainment, which is caused by the internal counter flow during the nucleate boiling within the falling liquid film in the evaporator section, is introduced to improve the existing TPCT model, so a comprehensive model with considering all three heat transfer regimes in the evaporator is further established. The suggested lower and upper limits of volume-filling ratio (CFR and EFR) are then determined by utilizing the criterias for local dryout, flooding limit and boiling limit. Furthermore, the effects of geometries, heat flux and vapor temperature on the range of volume-filling ratio are analyzed in details, a simplified correlation of CFR is then proposed based on the numerical modeling results. Particularly, the predictions of the distribution of falling film thickness and onset of flooding are validated with the published experimental data and other numerical simulation results. It is also found that the droplet entrainment significantly influences the thickness and distribution of the falling film. Increasing vapor temperature and inner diameter and decreasing the evaporator length significantly enlarge the volume-filling ratio range (between CFR and EFR), operation envelope (corresponding to boiling limit and flooding limit) of TPCT. Increasing the condenser length increases the volume-filling ratio range and operation envelope to a small extent. The influence mechanisms of the optimum filling ratio by the heat flux and geometries are complicated; however, a correlation of CFR can be obtained in a good agreement with the numerical modeling results within 30% deviation for the whole limited scope

    Search for Small Trans-Neptunian Objects by the TAOS Project

    Get PDF
    The Taiwan-America Occultation Survey (TAOS) aims to determine the number of small icy bodies in the outer reach of the Solar System by means of stellar occultation. An array of 4 robotic small (D=0.5 m), wide-field (f/1.9) telescopes have been installed at Lulin Observatory in Taiwan to simultaneously monitor some thousand of stars for such rare occultation events. Because a typical occultation event by a TNO a few km across will last for only a fraction of a second, fast photometry is necessary. A special CCD readout scheme has been devised to allow for stellar photometry taken a few times per second. Effective analysis pipelines have been developed to process stellar light curves and to correlate any possible flux changes among all telescopes. A few billion photometric measurements have been collected since the routine survey began in early 2005. Our preliminary result of a very low detection rate suggests a deficit of small TNOs down to a few km size, consistent with the extrapolation of some recent studies of larger (30--100 km) TNOs.Comment: 4 pages, 3 figures, IAU Symposium 23
    • …
    corecore